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Abstract

This paper studies the problem of RGB-D object
recognition. Inspired by the great success of deep
convolutional neural networks (DCNN) in Al, re-
searchers have tried to apply it to improve the per-
formance of RGB-D object recognition. Howev-
er, DCNN always requires a large-scale annotat-
ed dataset to supervise its training. Manually la-
beling such a large RGB-D dataset is expensive
and time consuming, which prevents DCNN from
quickly promoting this research area. To address
this problem, we propose a semi-supervised mul-
timodal deep learning framework to train DCNN
effectively based on very limited labeled data and
massive unlabeled data. The core of our frame-
work is a novel diversity preserving co-training al-
gorithm, which can successfully guide DCNN to
learn from the unlabeled RGB-D data by making
full use of the complementary cues of the RGB and
depth data in object representation. Experiments
on the benchmark RGB-D dataset demonstrate that,
with only 5% labeled training data, our approach
achieves competitive performance for object recog-
nition compared with those state-of-the-art results
reported by fully-supervised methods.

1 Introduction

Recent years have witnessed RGB-D object recognition be-
coming a very active research area in computer vision and
robotics with the rapid development of commodity depth
cameras. Such off-the-shelf sensors, e.g., Microsoft Kinec-
t and Intel RealSense, are capable of providing high quali-
ty synchronized RGB and depth information, to depict mul-
timodal characteristics of an object. Specifically, the RGB
modality captures rich colors and textures, while the depth
modality provides pure geometry and shape cues which are
robust to lighting and color variations. It represents an op-
portunity to dramatically improve the performance of object
recognition by combining the two complementary cues.
Remarkable efforts have been invested for RGB-D objec-
t recognition in the last few years. Most existing work falls
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into two kinds. One is about feature representation, includ-
ing handcrafted features [Lai et al., 2011a; Bo et al., 2011a;
R.C. et al., 2012] and learning-based features [Blum ez al.,
2012; Bo et al., 2012; Socher et al., 2012; Jhuo et al.,
2015]. The other one is about RGB-D fusion, like straight-
forward concatenation of RGB and depth features as well
as learning-based fusion [Lai et al., 2011b; Cheng er al.,
2015a]. Towards building a unified solution for feature learn-
ing and RGB-D fusion, a promising trend is to devise an
end-to-end deep learning system via convolutional neural
networks (DCNN) [Gupta er al., 2014; Eitel er al., 2015;
Wang et al., 2015], such as the one shown in Fig. 1 (a). Such
ideas were inspired by the great success of deep learning for
image classification (only RGB data). It should be noticed
that DCNN models always require a large-scale dataset for
supervised training, e.g., ImageNet with millions of anno-
tated images [Deng ef al., 2009]. However, labeling such a
large dataset for the emerging RGB-D object recognition task
is still expensive and time consuming. This prevents DCNN
from quickly promoting this research area. Thus it is neces-
sary to develop a new effective training framework for deep
learning to benefit from the massive unlabeled RGB-D data,
which is often cheap and easily available.

To handle the aforementioned problem, a natural idea is to
incorporate the conventional semi-supervised learning meth-
ods into the deep learning framework. Although many suc-
cessful semi-supervised methods exist in the literature [Zhu,
2005], we are particularly interested in the co-training algo-
rithm due to its unique advantage over the multimodal data.
Theoretical proofs have been given in [Blum and Mitchel-
1, 1998; Balcan et al., 2004] to guarantee the success of co-
training in learning from the unlabeled data on condition that:
1) each example contains two views, either of which is able
to depict the example well; and 2) the two views should not
be highly correlated. RGB-D data matches the two condition-
s well by providing two complementary cues of objects (i.e.,
RGB and depth). Therefore, the goal of this paper is to devel-
op a semi-supervised multimodal deep learning framework
based on co-training, as shown in Fig. 1 (b).

The pipeline of the framework can be summarized as fol-
lows. First, the RGB- and depth-DCNN models are trained
on the given labeled data of the respective views. Then each
model is applied to predict the unlabeled pool and label the
most confident examples for the other model, for which these



examples are random and informative to increase its capabil-
ity through the next round training. The two steps are repeat-
ed until no confident examples can be chosen for each other.
Finally, we add a fusion layer to combine the two stream net-
works for recognition and jointly train the whole model.

Although the proposed framework looks quite straightfor-
ward, it is not a trivial task to make it work. In fact, starting
the framework directly doesn’t show any inspiring results in
our experiments. There are two obstacles during the train-
ing of the framework. One is about the initial phase. Such
a limited labeled set is hard to provide a good deep learning
model for either the RGB or the depth modality due to over-
fitting, even though each model can be pretrained based on
other datasets like ImageNet and then finetuned on the RGB-
D object recognition task. The other is about the co-training
phase. Since each DCNN model selects those most confident
examples from every predicted class, it is prone to result in
a biased distribution over each category in the labeled pool
along with co-training, e.g., almost all “apples” will be red
but few are green, and the “cups” with handles will be dom-
inant compared to those without handles, meaning that the
intra-class diversity of each category is fading. As a result,
the final DCNN models trained on the imbalanced labeled
set have poor generalization ability for category-level object
recognition on the unseen data.

Two strategies are proposed in this paper to address the
involved problems. First, we devise two reconstruction net-
works to better initialize the RGB- and depth-DCNN model-
s for object recognition separately. The reconstruction net-
works make use of both the labeled and unlabeled data for
unsupervised feature learning, which can help to relieve the
over-fitting problem effectively. Second, we introduce a di-
versity preserving co-training algorithm to balance the added
samples from the unlabeled pool. To this end, we adopt the
convex clustering [Lashkari and Golland, 2007] to automati-
cally discover various intra-class attributes over each catego-
ry, and then keep the added samples to uniformly cover every
attribute of every category during the iterations. Such infor-
mative and balanced samples can boost the RGB- and depth-
DCNN models during every round training. We demonstrate
the effectiveness of the two strategies in the experiments.

The rest of this paper is organized as follows. Section 2
briefly reviews related work. Section 3 introduces the pro-
posed semi-supervised multimodal deep learning framework.
Experimental results and detailed analysis are reported in
Section 4. In Section 5, we finally draw our conclusions.

2 Related Work

RGB-D Object Recognition. Many successful methods
have been proposed for RGB-D object recognition in recen-
t years. Here we review those state-of-the-art supervised as
well as semi-supervised approaches evaluated on the bench-
mark RGB-D datasets.

Supervised Methods. Early work can be divided into two
groups. One was focused on feature extraction of the nov-
el RGB-D data, including handcrafted features [Lai er al.,
2011a] (such as SIFT and spin images), a series of appearance
and shape kernel descriptors [Bo er al., 2011al, and automati-

depth
classifier

[ ]

[ e =)
* o o

depth features

RGB
classifier

Q

RGB-DCNN  RGB features

[ =]
[ e )

depth features

(b) Our semi-supervised multimodal deep learning framework

Figure 1: The structures of (a) supervised and (b) semi-
supervised multimodal deep learning for RGB-D objec-
t recognition. Both (a) and (b) jointly learn the features and
classifiers in an end-to-end fashion.

cally learning features via successful machine learning meth-
ods [Blum et al., 2012; Bo et al., 2012; Socher et al., 2012;
Jhuo et al., 2015]. The other tried to explore a more effective
way for RGB and depth fusion [Lai er al., 2011b; Cheng et
al., 2015a] instead of a direct feature concatenation in the first
group. Both the two groups of work were followed by SVM
or random forest classifier, fully supervised by all the train-
ing data for better object recognition. Very recently, research-
es began to jointly learn the features, classifiers and RGB-D
fusion using end-to-end deep learning [Gupta er al., 2014,
Eitel er al., 2015; Wang et al., 2015]. Due to the lack of
a large scale annotated RGB-D object dataset, they spared
no efforts to augment the data, e.g., synthesizing objects via
CAD rendering, as well as generating new samples via geo-
metrical transformations. Compared to the real data, the arti-
ficial data inevitably has a different distribution, and is hard to
provide the same rich information to depict object categories.
Thus the potential of deep learning to improve RGB-D object
recognition is limited.

Semi-Supervised Methods. The most similar work to ours
is that of [Cheng et al., 2014; 2015c], who also employed co-
training for RGB-D object recognition to reduce the depen-
dence on large annotated training sets. However, they only
adopted co-training to retrain the RGB and depth SVM clas-
sifiers based on the features extracted in advance. Different
from them, this paper proposes a powerful semi-supervised
deep learning method, which can jointly learn the features,
classifiers and RGB-D fusion by making use of the unlabeled
data. Experimental results show that our method achieves
much better performance.

Semi-Supervised Deep Learning. [Weston e al., 2012] pro-
posed a semi-supervised deep learning method for the single-
modal data by embedding a pairwise loss in the middle lay-
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Figure 2: Overview of our semi-supervised multimodal deep learning framework for RGB-D object recognition. The training
of the framework mainly contains two iterative steps: 1) Training the RGB- and depth-DCNN models over the respective data
based on the labeled pool (indicated as solid lines); 2) Applying each model to predict the unlabeled pool and select the most
confident samples over each category for the other, whilst keeping these newly labeled examples to preserve intra-class diversity
(indicated as dashed lines. See details in the text.). After all iterations are completed, we add a fusion classification layer and
optimize the entire model end-to-end. Note that all the classifiers are implemented with a hingeloss layer. Best viewed in color.

er. However, they required extra information about whether a
pair of unlabeled images belong to the same class, which were
hard to obtain in reality. Differently, we focus on the multi-
modal RGB-D object recognition, and propose a more explic-
it semi-supervised deep learning framework to learn from the
unlabeled data via diversity preserving co-training.

3 Our Approach

3.1 Overview

We target on learning a powerful semi-supervised multi-
modal deep learning model for RGB-D object recognition
based on limited labeled data and massive unlabeled da-
ta. To be specific, we have a small labeled pool £ =
{(Il, Ds, y1)7 RN (I]\{,DM, y]w)} with M pairwise RGB-
D objects , where Z; and D; denote the corresponding RGB
and depth modalities of the i-th example with the category
label y; € {1,---,C}. Meanwhile, we have a large-scale
unlabeled RGB-D dataset Y = {(Z1,D1), -+ ,(Zn,Dn)}
with similar data distribution of the labeled pool. The pro-
posed framework in this paper is shown in Fig. 2, for which
a diversity preserving co-training algorithm is introduced to
learn from the unlabeled RGB-D data. Now we detail three
important phases of the framework.

Initialization. A well trained RGB- as well as depth-
DCNN model before co-training is the first prerequisite of
the whole system. This paper adopts the architecture of
AlexNet [Krizhevsky et al., 2012] to represent both the RGB
and depth data. However, the small labeled set £ is infeasi-
ble to supervise the training of such deep learning models for
object recognition. To address this problem, we devise two
reconstruction networks (Section 3.2) to initialize the convo-
lution layer parameters (i.e., convl,....,conv5) of RGB- and
depth-DCNN models, respectively. Each reconstruction net-
work tries to encode and decode its inputs, taking advantage
of all the labeled and unlabeled data to learn meaningful fea-
tures. After pretrained by the corresponding reconstruction
network, the RGB- and depth-DCNN models finetuned on £
can generalize well for object recognition.

Training. The training of the semi-supervised deep learn-
ing framework mainly involves two iterative steps, including
training each DCNN model and updating the labeled pool as
illustrated in Fig. 2. For clarity, we denote the state of the
system at the ¢-th iteration as Ly, U;. To select an informative
and balanced set #; = {HFB, HIP"} = ((Z,,Di, 5:)}
(9, s the predicted category label) from I/, to update the next
round train of the deep learning models effectively, a diversity
preserving co-training algorithm (Section 3.3) is introduced.

The goal of the diversity preserving algorithm is to make
sure that H,; captures as diverse intra-class attributes as pos-
sible for each category of each modality. To this end, the
convex clustering [Lashkari and Golland, 2007] is utilized to
discover latent attributes over each category of each modali-
ty based on L;, and then gives a RGB as well as a depth at-
tribute tag for each object, i.e., the labeled pool can be record-

edas £, = {(Z;, 2R%B, D;, 27" )}, where the attribute
tag ZiRGB e{1, - 7|2RGB‘}’ Z;iepth e {1, ,|Zdepth|}.
Note that ZEGB (or Z9ePthy is an attribute set integrating
all the generated attributes over all categories of the RGB
(or depth) modality. Compared to those non-convex cluster-
ing methods like k-means, convex clustering is guaranteed
to converge to the global minimum and automatically finds
the optimal number of clusters given a temperature-like pa-
rameter. Such a characteristic is important for our method
to search for the unknown representative attributes for each
category. Now we train an extra attribute classifier for each
modality, which can help the category classifier to select a
diversity preserving confident set H;, consisting of uniform
samples over each attribute of each category. It is noted that
all the classifiers in Fig. 2 are implemented with a hingeloss
layer.

When no confident examples can be selected from U4, the
iteration stops. Finally, we add a fusion layer and train the
whole network end-to-end based on the resulting model of
the last iteration.

Inference. Given an unseen RGB-D object, we utilize the
final RGB model, depth model, and the fusion model to pre-
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Figure 3: The reconstruction network for the RGB modality,
which is the same for the depth modality (We compute 3-
channel surface normals to represent the depth data).

dict the category label, respectively. In the experiments, we
compare the performance of our method with the state of the
arts evaluated on each modality as well as the both.

3.2 Reconstruction Networks for Pretraining

The architecture of our reconstruction network for each
modality is shown in Fig. 3, which consists of 5 convolutional
layers (with the same structure of the convolutional layers in
Fig. 2) and 12 fully connected layers to decode each channel
of the inputs. It is noted that the depth data is represented as
3-channel surface normals in this paper, since researches [Bo
et al.,2012; Cheng et al., 2015¢] have demonstrated that sur-
face normals can capture more robust geometry cues of object
than the original depth data. For simplicity, we still use the
term “depth” instead of the surface normals in this paper.
Both the labeled and unlabeled data are utilized to train
the reconstruction network of each modality. Specifically,
the input of the network is a rescaled RGB or depth image
x € RM8X148X3 The corresponding output is a reconstruct-
ed map R(z) € R64%64%3 with downsampled resolution due
to memory and computational loss. We train the network by
minimizing the mean square reconstruction error

v 1 > ~ch ch

SRNG))

where M, N is the size of the labeled and unlabeled pool in
the beginning, ch denotes the channel index of the input, and
the modality v represents RGB or depth data. & € R64*64x3
is the ground truth by resizing z via bilinear interpolation.

We use the standard back-propagation algorithm based on
stochastic gradient descent (SGD) to optimize the reconstruc-
tion network. When the network of each modality achieves
convergence, the parameters of the convolutional layers (con-
vl, ..., conv5 in Fig. 3) are utilized to initialize the corre-
sponding convolutional layers of each modality in the pro-
posed framework of Fig. 2. The experiments will show that
such a pretraining strategy is able to largely improve the gen-
eralization ability of RGB- and depth-DCNN models for ob-
ject recognition, even though very limited labeled samples in
L are available to supervise the training.

3.3 Diversity Preserving Co-Training

The goal of the diversity preserving co-training algorithm is
to select highly confident examples with predicted labels from
the unlabeled pool, whilst keeping these examples uniformly
cover each category, as well as each intra-class attribute for
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Figure 4: A sketch map illustrates the convex clustering over
the category “coffee mug” in the labeled pool. For RGB
modality, it finds 5 latent attributes, while 3 attributes for the
depth modality (fc7 features are used for convex clustering).

each category. Such newly labeled examples by one DCNN
model can greatly boost the performance of the other one in
the next round training. Now we introduce the three main
components of the iterative algorithm. For clarity, sometimes
we omit the iteration number ¢ in equations below.

Convex Clustering. We apply convex clustering [Lashkar-
i and Golland, 2007] to discover the diverse intra-class at-
tributes for each category of each modality independently
based on the labeled pool L. Convex clustering solve the clus-
tering problem by maximizing the following log-likelihood
function

I({az}; £2)

LY log[ X e el

Iz
zELY /€LY
st. > gz=1,¢.>0 2)
zeLY
where the category ¢ € {1,---,C}, the modality v denotes

the RGB or depth data, and dy(z,2") = ||¢(x) — ¢(2')]|2
is the Euclidean distance between the DCNN features of t-
wo examples (fc7 is used). The scalar weight ¢, denotes
the representative degree of exemplar =, while 5 is a pos-
itive temperature-like parameter that controls the sparseness
of {¢.} (g > Oindicates that x is a cluster center, and ¢, = 0
denotes an exemplar). Given 3, we follow [Lashkari and
Golland, 2007] to optimize the likelihood function for each
category of each modality individually. Due to space limits,
please refer [Lashkari and Golland, 2007] for more details.
As a result, we obtain two cluster sets

ZRGB _ {Z{%GB . ZgGB}
. depth  ~depth 3)
Zdlpth:{zl Pt 7"'aZCpt }7

where Z! is a subset that contains all the clusters generated
on category ¢ of modality v. Fig. 4 illustrates how convex
clustering is applied to discover latent attributes for the cate-
gory “coffee mug” for example.

Multitask Learning. For each modality, we define each
cluster as an attribute, and assign every exemplar to its clos-
est cluster to tag the same attribute label. Now we train the
DCNN model for both category and attribute recognition, as
shown in Fig. 2. The loss function of the multitask learning
for each modality is

Lossyp = >, max(0,1 — ypr,(z))+

T oy “)
)‘ Z max(O, 1- Z@attr(x))a
zeLY



where y, z denote the ground truth category label and attribute
label for exemplar = of modality v, while ¢7,;, @3, are the
corresponding predicted probabilities of the DCNN model.
We fix the coefficient A = 1 in the experiments.

Co-Training. Finally, the two well-trained attribute DCN-
N models are utilized to predict the unlabeled pool ¢/ over the
respective modalities. A highly confident set H" for RGB or
depth data can be selected as follows:

H =A@ 2lscoretyy, (2l2) > o €U}, (5)

where score,,, (z|x) = f(oly,(z]2)) is the predicted score
for x carrying the attribute z via a softmax function f, and
7 is a score threshold. To further keep the data balance and
accuracy, we only reserve the top K examples with highest
scores for each attribute in H". Then for each remaining ex-
emplar x € H", we are easy to obtain its category label y
based on the predicted attribute label z according to Eq.(3).
Now we attach both the RGB and depth data to « and update
the labeled pool as

£t+1 _ ['t U HRGB U Hdepth’ (6)

where every exemplar in £, still contains pairwise RGB-D
data with a category label (the attribute labels will be updated
by the next round convex clustering). During the next round
training, ¢ E can greatly improve the depth-DCNN model
as they are new and informative labeled samples, which is the
same to H°P*" for RGB-DCNN.

4 Experiments

4.1 Experimental Setup

Dataset. We perform our experiments on the Washington
RGB-D dataset [Lai et al., 2011al captured by Microsoft
Kinect. The dataset consists of 300 household objects,
grouped into 51 categories. Each object is imaged from 3
vertical angles as well as multiple horizontal angles, result-
ing roughly 600 images per object. We subsample every 5th
frame from each instance and obtain around 41,877 images
in total for category recognition.

To evaluate our semi-supervised learning, we first utilize
one of the 10 random splits provided by [Lai e al., 2011a]
to divide the dataset into a training set and a testing set. For
any split, there are around 35,000 examples for training and
around 6,877 for testing. Then we randomly labeled 5% sam-
ples (around 1750) of the training set, and remain the rest
unlabeled (around 33,250). Finally, we train our model based
on both the labeled and unlabeled data in the training set, and
evaluate its performance on the testing set.

Besides semi-supervised methods, we also compare our
approach to those existing powerful supervised methods, for
which all the objects in the training set are manually labeled
to train their classifiers. All the experiments are repeated 10
times based on the given 10 splits, and the average accuracies
are reported for comparison.

Parameter Setting of Our Approach. We fix 7 = 0.5,
K = 20, p = 1 for our semi-supervised learning method,
although dynamically finetuning each parameter could result
in a better performance. For the reconstruction network of

Table 1: Comparison of recent results on the Washington
RGB-D object database for category recognition.

‘ Supervised Methods ‘ Depth ‘ RGB ‘ Combine

[Lai et al., 201 1a]tinear svm 53.14+ 1.7|74.3 £3.3|181.9 + 2.8
[Lai ef al., 201 1al*e™et sv™ 1647 +2.2(74.5 + 3.1/83.8 + 3.5
[Lai et al., 201 1a]"#ndom forest 166 8 + 9 5[74.7 4+ 3.6|79.6 + 4.0
[Lai ez al., 201 1b]*PL 70.2 4+ 2.0(78.6 + 3.1/85.4 + 3.2
[R.C. et al., 2012]3P SPMK 67.8 - -

[Bo ef al., 2011a]¥PFS 78.8 £ 2.7|77.7+ 1.9|186.2 + 2.1
[Blum ez al., 2012]°%¥M - - 86.4 + 2.3
[Bo ef al., 2011b]T™MP 70.3 +2.2[74.7 £ 2.5/82.1 £ 3.3
[Bo et al., 2012]5F ~HMP 81.2+2.3|82.4 + 3.1|87.5 £ 2.9
[Socher ef al., 2012]SNNENN 178 9 + 3.8|80.8 + 4.2(86.8 + 3.3
[Schwarz ef al., 2015]°~N - 83.1+2.0[89.44+1.3
[Uhuo et al., 2015]771CA 83.9 + 2.8/85.7 + 2.7/89.6 + 3.8
[Eitel et al., 2015]7WsCNNUHAY Q3 6 + 9 7[84.1 + 2.7[91.0 £ 1.9
[Eitel et al., 2015]7WSCNNGet) 183 8 + 9 7[84.1 £ 2.7(91.3 £ 1.4
[Cheng ef al., 2015a]Va:Pine - - 92,7+ 1.0
[Wang et al., 2015]NMSS 75.6 £ 2.7|74.6 4+ 2.9|88.5 + 2.2
[Cheng et al., 2015b]°FK 85.8 +2.3(86.8 +2.2(91.2 + 1.5

’ Semi-Supervised Methods Depth RGB

[Cheng et al., 2014]°T5VML 718 +0.8[77.1 £ 2.3|81.6 1.4
[Cheng et al., 2015c]TH5VM2 |75 4 4 2.478.7 £ 1.4[83.7 £ 1.3
82.6 + 2.3|85.5 4 2.0(89.2 £ 1.3

Combine

our approach

each modality, we use a mini-batch b = 128 of images and
initial learning rate 7 = 10~°, multiplying the learning rate
by 0.1 at every s = 4000 iterations. Towards the training
of the RGB- and depth-DCNN models for recognition during
every iteration, we set b = 128, n = 1077, and s = 3000.
It is noted that we only apply convex clustering for the first
5 iterations in consideration of efficiency, and then keep the
attribute labels unchanged for the rest iterations (around 400
attributes for RGB, and 280 attributes for depth at last).

4.2 Overall Performance

Table 1 presents the recognition accuracies of all recent meth-
ods. We can find that: 1) with only 5% labeled data, our
method can achieve very promising result on each modali-
ty (depth: 82.6%, RGB: 85.5%, both: 89.2%), demonstrat-
ing the effectiveness of the proposed semi-supervised multi-
modal deep learning framework based on diversity preserving
co-training algorithm; 2) Compared to other semi-supervised
methods [Cheng et al., 2014; 2015c], which adopted the co-
training algorithm directly to retrain the RGB- and depth-
SVM classifiers iteratively based on the extracted features in
advance, our end-to-end deep learning system shows a large
improvement (nearly 7% increase over each modality) for ob-
ject recognition; 3) Our method is comparable to all state-of-
the-art supervised methods, except for the one of [Cheng et
al., 2015al, who employed dense matching to obtain a query
adaptive similarity measure for RGB-D object recognition.
Despite of the best performance, their algorithm is very time-
consuming due to plentiful dense matching required for one
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Figure 5: Performance analysis of the semi-supervised multimodal deep learning framework. See details in the text.

query object, restricting their potentials in practical use. Our
method is efficient in testing, since the recognition only needs
one forward propagation of the network.

Furthermore, we also run our method on the fully super-
vised training data, and the average results are 84.0% accura-
cy for depth, 86.3% for RGB, and 91.3% for both, which is
a little superior to our method based on only 5% labeled da-
ta. The results further demonstrate that our semi-supervised
learning approach is able to make use of the unlabeled data
very effectively. Readers may doubt why the deep learning
model does not surpass the traditional methods like fisher k-
ernel encoding [Cheng et al., 2015b] and the dense matching
methods [Cheng er al., 2014]. We think the main reason is the
scale of the Washington dataset, which is relatively very small
compared to ImageNet [Deng er al., 2009]. If given more la-
beled or unlabeled RGB-D data, we believe our method can
achieve much higher performance for object recognition.

4.3 Detailed Analysis

In this section, we analyze the effects of the reconstruction
networks, the score threshold 7, the diversity preserving co-
training and the initial labeled size to the performance of our
semi-supervised multimodal deep learning framework. Note
that we evaluate each of them by keeping others the same to
the experimental settings in Section 4.1.

The effect of the reconstruction networks. To demon-
strate the effectiveness of our reconstruction networks for
pretraining, we compare it with a popular pretraining skill,
which utilizes the AlexNet model [Krizhevsky er al., 2012]
pretrained on imageNet to initialize the parameters of both
the RGB- and depth-DCNN models. As shown in Fig. 5 (a),
the reconstruction networks can better boost the performance
of our semi-supervised learning. We explain that, compared
to the knowledge learned from other domains like ImageNet,
the reconstruction network trained on the RGB-D data is able
to learn more proper cues for RGB-D object representation.

The effect of the score threshold 7. As shown in
Fig. 5 (b), our semi-supervised learning is robust to 7 when
0.3 < 7 < 0.7. Such a characteristic is very important in
practical usage since a wide range of 7 can keep the algorith-
m successful. When 7 is smaller than 0.3, it drops a little
because some unconfident examples (probably with wrongly
predicted labels) can be involved to distract the next round su-
pervised training. When 7 is larger than 0.7, the performance

of our method begins to drop quickly. It is reasonable, since
very few examples can be added to the labeled pool to benefit
the network training. Note that we always constrain that the
added confident examples of each attribute is no more than
K = 20 for balance and accuracy, whatever the value of 7 is
set.

The effect of the diversity preserving co-training. As
shown in Fig. 5 (c), our diversity preserving co-training al-
gorithm can significantly increase the capability of each DC-
NN model along with iterations. When we employ the con-
ventional co-training algorithm without diversity preserving
constraint, the improvements are much inferior, as shown in
Fig. 5 (d). We explain that the conventional co-training is
prone to result in a biased labeled pool, which limits the po-
tential of each DCNN model a lot.

The effect of the initial labeled size. When the initial
labeled size of the training set is changed from 1% to 10%,
the recognition accuracies of our method are increased from
(68.3%, 79.3%, 84.4%) to (83.8%, 86.1%, 91.2%). Adding
more labeled examples do not show obvious improvements,
as 10% labeled data is already sufficient for our method to
learn from the unlabeled data successfully.

5 Conclusion

This paper proposes a semi-supervised multimodal deep
learning framework for RGB-D object recognition, which is
capable of reducing the dependence of deep learning method
on large-scale manually labeled RGB-D data. The key to the
framework are two parts: 1) the reconstruction networks for
good initialization and 2) the diversity preserving co-training
algorithm for effective semi-supervised learning. Experi-
mental results on the Washington RGB-D benchmark dataset
demonstrate the effectiveness of our approach.
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